API Reference

Complete API documentation for the BaseballCV package.

Table of contents

  1. Functions Module
    1. BaseballTools
      1. Constructor
      2. Methods
        1. distance_to_zone
        2. track_gloves
    2. BaseballSavVideoScraper
      1. Constructor
      2. Methods
        1. run_executor
        2. get_play_ids_df
        3. cleanup_savant_videos
    3. DataTools
      1. Constructor
      2. Methods
        1. generate_photo_dataset
        2. automated_annotation
    4. LoadTools
      1. Constructor
      2. Methods
        1. load_model
        2. load_dataset
  2. Models Module
    1. YOLOv9
      1. Constructor
      2. Methods
        1. inference
        2. finetune
        3. evaluate
    2. RFDETR
      1. Constructor
      2. Methods
        1. inference
        2. finetune
    3. Florence2
      1. Constructor
      2. Methods
        1. inference
        2. finetune
    4. PaliGemma2
      1. Constructor
      2. Methods
        1. inference
        2. finetune
    5. DETR
      1. Constructor
      2. Methods
        1. finetune
        2. inference
        3. evaluate
  3. Datasets Module
    1. DataProcessor
      1. Constructor
      2. Methods
        1. prepare_dataset
  4. Utilities Module
    1. BaseballCVLogger
      1. Methods
        1. get_logger
    2. ProgressBar
      1. Constructor
      2. Methods
        1. update
  5. Version Information

Functions Module

baseballcv.functions

The functions module provides the core functionality for baseball video analysis, data loading, and dataset generation.

BaseballTools

Main Class

from baseballcv.functions import BaseballTools

The main class for analyzing baseball videos with Computer Vision.

Constructor

BaseballTools(device: str = 'cpu', verbose: bool = True)
Parameter Type Description Default
device str Device to use for the analysis ‘cpu’
verbose bool Whether to print verbose output True

Methods

distance_to_zone
distance_to_zone(
    start_date: str,
    end_date: str,
    team_abbr: str = None,
    pitch_type: str = None,
    player: int = None,
    max_videos: int = None,
    max_videos_per_game: int = None,
    create_video: bool = True,
    catcher_model: str = 'phc_detector',
    glove_model: str = 'glove_tracking',
    ball_model: str = 'ball_trackingv4',
    zone_vertical_adjustment: float = 0.5,
    save_csv: bool = True,
    csv_path: str = None
)  List[Dict]

Calculates the distance of a pitch to the strike zone in a video, as well as other information about the Play ID.

Parameter Type Description Default
start_date str Start date of the analysis (YYYY-MM-DD) Required
end_date str End date of the analysis (YYYY-MM-DD) Required
team_abbr str Team abbreviation to filter by None
pitch_type str Pitch type to filter by (e.g., “FF” for fastball) None
player int Player ID to filter by None
max_videos int Maximum number of videos to analyze None
max_videos_per_game int Maximum videos per game to analyze None
create_video bool Whether to create analysis video True
catcher_model str PHCDetector model name ‘phc_detector’
glove_model str GloveTracking model name ‘glove_tracking’
ball_model str BallTracking model name ‘ball_trackingv4’
zone_vertical_adjustment float Factor to adjust strike zone vertically 0.5
save_csv bool Whether to save analysis results to CSV True
csv_path str Custom path for CSV file None

Returns

List[Dict] containing for each video:

  • video_name: Name of the video file
  • play_id: ID of the play from Baseball Savant
  • game_pk: Game ID from Baseball Savant
  • ball_glove_frame: Frame where ball reaches glove
  • ball_center: Coordinates of ball center
  • strike_zone: Strike zone coordinates (left, top, right, bottom)
  • distance_to_zone: Distance from ball to strike zone
  • position: Position relative to strike zone (“high”, “low”, “inside”, “outside”)
  • annotated_video: Path to the annotated video if create_video is True
  • in_zone: Whether the pitch is in the strike zone

Example

tools = BaseballTools(device='cuda')
results = tools.distance_to_zone(
    start_date="2024-05-01",
    end_date="2024-05-02",
    team_abbr="NYY",
    create_video=True
)
track_gloves
track_gloves(
    mode: str = "regular",
    device: str = None,
    confidence_threshold: float = 0.5,
    enable_filtering: bool = True,
    max_velocity_inches_per_sec: float = 120.0,
    show_plot: bool = True,
    generate_heatmap: bool = True,
    create_video: bool = True,
    video_path: str = None,
    output_path: str = None,
    input_folder: str = None,
    delete_after_processing: bool = False,
    skip_confirmation: bool = False,
    max_workers: int = 1,
    generate_batch_info: bool = True,
    start_date: str = None,
    end_date: str = None,
    team_abbr: str = None,
    player: int = None,
    pitch_type: str = None,
    max_videos: int = 10,
    suppress_detection_warnings: bool = False,
    max_videos_per_game: int = None
)  Dict

Track the catcher’s glove, home plate, and baseball in videos using one of three modes.

Parameter Type Description Default
mode str Processing mode - “regular”, “batch”, or “scrape” “regular”
device str Device to run the model on None
confidence_threshold float Confidence threshold for detections 0.5
enable_filtering bool Enable filtering of outlier detections True
max_velocity_inches_per_sec float Maximum plausible velocity for filtering 120.0
show_plot bool Show 2D tracking plot in output video True
generate_heatmap bool Generate heatmap of glove positions True
create_video bool Create an output video file True
video_path str Path to input video (for regular mode) None
output_path str Path for output video (for regular mode) None
input_folder str Folder with videos (for batch mode) None
delete_after_processing bool Delete videos after processing False
skip_confirmation bool Skip deletion confirmation dialog False
max_workers int Maximum parallel workers for batch mode 1
generate_batch_info bool Generate batch summary info True
start_date str Start date for scrape mode (YYYY-MM-DD) None
end_date str End date for scrape mode (YYYY-MM-DD) None
team_abbr str Team abbreviation for scrape mode None
player int Player ID for scrape mode None
pitch_type str Pitch type for scrape mode None
max_videos int Maximum videos to download in scrape mode 10
suppress_detection_warnings bool Suppress detection warning messages False
max_videos_per_game int Maximum videos per game in scrape mode None

Returns

Dict containing:

  • For regular mode:
    • output_video: Path to output video
    • tracking_data: Path to CSV with tracking data
    • movement_stats: Statistics about glove movement
    • heatmap: Path to glove position heatmap
  • For batch mode:
    • processed_videos: Number of processed videos
    • individual_results: List of results for each video
    • combined_csv: Path to combined tracking data
    • summary_file: Path to summary statistics file
    • combined_heatmap: Path to combined heatmap
  • For scrape mode:
    • Same as batch mode plus scrape information

Example

# Regular mode - process a single video
tools = BaseballTools(device='cuda')
result = tools.track_gloves(
    mode="regular",
    video_path="catcher_video.mp4"
)

# Batch mode - process multiple videos
result = tools.track_gloves(
    mode="batch",
    input_folder="catcher_videos",
    max_workers=4
)

# Scrape mode - download and process videos
result = tools.track_gloves(
    mode="scrape",
    start_date="2024-05-01",
    end_date="2024-05-02",
    team_abbr="NYY",
    max_videos=5
)

BaseballSavVideoScraper

Video Scraping

from baseballcv.functions import BaseballSavVideoScraper

Class for scraping baseball videos from Baseball Savant based on various criteria.

Constructor

BaseballSavVideoScraper(
    start_dt: str,
    end_dt: str = None,
    player: int = None,
    team_abbr: str = None,
    pitch_type: str = None,
    download_folder: str = 'savant_videos',
    max_return_videos: int = 10,
    max_videos_per_game: int = None
)
Parameter Type Description Default
start_dt str Start date (YYYY-MM-DD) Required
end_dt str End date (YYYY-MM-DD) None
player int Player ID to filter by None
team_abbr str Team abbreviation to filter by None
pitch_type str Pitch type to filter by None
download_folder str Folder for downloaded videos ‘savant_videos’
max_return_videos int Maximum videos to return 10
max_videos_per_game int Maximum videos per game None

Methods

run_executor
run_executor()  None

Run multithreaded video downloading process.

get_play_ids_df
get_play_ids_df()  pd.DataFrame

Returns a pandas DataFrame of the extracted play IDs and associated data.

cleanup_savant_videos
cleanup_savant_videos()  None

Deletes the download folder directory.

DataTools

Dataset Creation

from baseballcv.functions import DataTools

Class for generating and processing datasets for computer vision tasks in baseball.

Constructor

DataTools()

Methods

generate_photo_dataset
generate_photo_dataset(
    output_frames_folder: str = "cv_dataset",
    video_download_folder: str = "raw_videos",
    max_plays: int = 10,
    max_num_frames: int = 6000,
    max_videos_per_game: int = 10,
    start_date: str = "2024-05-22",
    end_date: str = "2024-07-25",
    delete_savant_videos: bool = True,
    use_savant_scraper: bool = True,
    input_video_folder: str = None,
    use_supervision: bool = False,
    frame_stride: int = 30
)  str

Extracts random frames from baseball videos to create a photo dataset.

Parameter Type Description Default
output_frames_folder str Folder to save photos “cv_dataset”
video_download_folder str Folder for videos “raw_videos”
max_plays int Maximum plays to download 10
max_num_frames int Maximum frames to extract 6000
max_videos_per_game int Max videos per game 10
start_date str Start date (YYYY-MM-DD) “2024-05-22”
end_date str End date (YYYY-MM-DD) “2024-07-25”
delete_savant_videos bool Delete videos after extraction True
use_savant_scraper bool Use savant scraper True
input_video_folder str Custom video folder None
use_supervision bool Use supervision library False
frame_stride int Frame skip for supervision 30

Returns

str: Path to the folder containing the extracted frames

automated_annotation
automated_annotation(
    model_alias: str = None,
    model_type: str = 'detection',
    image_dir: str = "cv_dataset",
    output_dir: str = "labeled_dataset",
    conf: float = 0.80,
    device: str = 'cpu',
    mode: str = 'autodistill',
    ontology: dict = None,
    extension: str = '.jpg'
)  str

Automatically annotates images using pre-trained models.

Parameter Type Description Default
model_alias str Alias of model to use None
model_type str Type of CV model ‘detection’
image_dir str Directory with images “cv_dataset”
output_dir str Directory for output “labeled_dataset”
conf float Confidence threshold 0.80
device str Device to run model on ‘cpu’
mode str Annotation mode ‘autodistill’
ontology dict Ontology for autodistill None
extension str Image file extension ‘.jpg’

Returns

str: Path to the output directory with annotated data

LoadTools

Model & Dataset Loading

from baseballcv.functions import LoadTools

Class for downloading and loading models and datasets.

Constructor

LoadTools()

Methods

load_model
load_model(
    model_alias: str = None,
    model_type: str = 'YOLO',
    use_bdl_api: bool = True,
    model_txt_path: str = None
)  str

Loads a baseball computer vision model.

Parameter Type Description Default
model_alias str Model alias to load None
model_type str Model type (‘YOLO’, ‘FLORENCE2’, ‘PALIGEMMA2’, ‘DETR’, ‘RFDETR’) ‘YOLO’
use_bdl_api bool Use BallDataLab API True
model_txt_path str Path to download link file None

Available model aliases:

  • YOLO: ‘phc_detector’, ‘bat_tracking’, ‘ball_tracking’, ‘glove_tracking’, ‘ball_trackingv4’, ‘amateur_pitcher_hitter’, ‘homeplate_tracking’
  • Florence2: ‘ball_tracking’, ‘florence_ball_tracking’
  • PaliGemma2: ‘paligemma2_ball_tracking’
  • DETR: ‘detr_baseball_v2’
  • RFDETR: ‘rfdetr_glove_tracking’

Returns

str: Path to saved model weights

load_dataset
load_dataset(
    dataset_alias: str,
    use_bdl_api: bool = True,
    file_txt_path: str = None
)  str

Loads and extracts a dataset.

Parameter Type Description Default
dataset_alias str Dataset alias to load Required
use_bdl_api bool Use BallDataLab API True
file_txt_path str Path to download link file None

Available dataset aliases:

  • YOLO format: ‘okd_nokd’, ‘baseball_rubber_home_glove’, ‘baseball_rubber_home’, ‘baseball’, ‘phc’, ‘amateur_pitcher_hitter’
  • COCO format: ‘baseball_rubber_home_COCO’, ‘baseball_rubber_home_glove_COCO’
  • JSONL format: ‘amateur_hitter_pitcher_jsonl’
  • Raw photos: ‘broadcast_10k_frames’, ‘broadcast_15k_frames’
  • HuggingFace datasets: ‘international_amateur_baseball_catcher_photos’, ‘international_amateur_baseball_catcher_video’, ‘international_amateur_baseball_photos’, ‘international_amateur_baseball_game_video’, ‘international_amateur_baseball_bp_video’, ‘international_amateur_pitcher_photo’

Returns

str: Path to extracted dataset

Models Module

baseballcv.model

The models module provides implementations of various computer vision models optimized for baseball analysis.

YOLOv9

Object Detection

from baseballcv.model import YOLOv9

Class for using YOLOv9 models for object detection in baseball contexts.

Constructor

YOLOv9(
    device: str | int = "cuda",
    model_path: str = '',
    cfg_path: str = 'models/detect/yolov9-c.yaml',
    name: str = 'yolov9-c'
)
Parameter Type Description Default
device str | int Device for inference (‘cpu’, ‘cuda’, or GPU index) ‘cuda’
model_path str Path to initial weights ’’
cfg_path str Path to model config ‘models/detect/yolov9-c.yaml’
name str Name of the model ‘yolov9-c’

Methods

inference
inference(
    source: str | List[str],
    imgsz: tuple = (640, 640),
    conf_thres: float = 0.25,
    iou_thres: float = 0.45,
    max_det: int = 1000,
    **kwargs
)  List[Dict]

Run inference with YOLOv9 model.

Parameter Type Description Default
source str | List[str] Path(s) to image or video Required
imgsz tuple Input image size (640, 640)
conf_thres float Confidence threshold 0.25
iou_thres float IoU threshold 0.45
max_det int Maximum detections per image 1000

Additional kwargs:

  • view_img (bool): Show results. Default: False
  • save_txt (bool): Save results to *.txt. Default: False
  • save_conf (bool): Save confidences in –save-txt labels. Default: False
  • save_crop (bool): Save cropped prediction boxes. Default: False
  • hide_labels (bool): Hide labels. Default: False
  • hide_conf (bool): Hide confidences. Default: False
  • vid_stride (int): Video frame-rate stride. Default: 1

Returns

List[Dict]: List of dictionaries containing detection results

finetune
finetune(
    data_path: str,
    epochs: int = 100,
    imgsz: int = 640,
    batch_size: int = 16,
    **kwargs
)  Dict

Finetune a YOLOv9 model.

Parameter Type Description Default
data_path str Path to data config file Required
epochs int Number of training epochs 100
imgsz int Image size 640
batch_size int Batch size 16

Returns

Dict: Training results

evaluate
evaluate(
    data_path: str,
    batch_size: int = 32,
    imgsz: int = 640,
    conf_thres: float = 0.001,
    iou_thres: float = 0.7,
    max_det: int = 300,
    **kwargs
)  Tuple

Evaluate YOLOv9 model performance.

Parameter Type Description Default
data_path str Path to data config file Required
batch_size int Batch size 32
imgsz int Image size 640
conf_thres float Confidence threshold 0.001
iou_thres float IoU threshold 0.7
max_det int Maximum detections 300

Returns

Tuple: Evaluation metrics including mAP values

RFDETR

Object Detection

from baseballcv.model import RFDETR

RF DETR implementation for object detection.

Constructor

RFDETR(
    device: str = "cpu",
    model_path: str = None,
    imgsz: int = 560,
    model_type: str = "base",
    labels: List[str] = None,
    project_path: str = "rfdetr_runs"
)
Parameter Type Description Default
device str Device for inference “cpu”
model_path str Path to model weights None
imgsz int Image size 560
model_type str Model type (“base” or “large”) “base”
labels List[str] Class labels None
project_path str Output directory “rfdetr_runs”

Methods

inference
inference(
    source_path: str,
    conf: float = 0.2,
    save_viz: bool = True
)  Tuple[List, str]

Run inference with RF DETR model.

Parameter Type Description Default
source_path str Path to image or video Required
conf float Confidence threshold 0.2
save_viz bool Save visualization True

Returns

Tuple: List of detections and path to output visualization

finetune
finetune(
    data_path: str,
    epochs: int = 50,
    batch_size: int = 4,
    lr: float = 0.0001,
    lr_encoder: float = 0.00015,
    **kwargs
)  RFDETR

Finetune RF DETR model.

Parameter Type Description Default
data_path str Path to dataset Required
epochs int Number of epochs 50
batch_size int Batch size 4
lr float Learning rate 0.0001
lr_encoder float Encoder learning rate 0.00015

Returns

RFDETR: Trained model instance

Florence2

Vision Language Model

from baseballcv.model import Florence2

Florence2 vision language model for baseball analysis.

Constructor

Florence2(
    model_id: str = 'microsoft/Florence-2-large',
    model_run_path: str = f'florence2_run_{datetime.now().strftime("%Y%m%d")}',
    batch_size: int = 1
)
Parameter Type Description Default
model_id str HuggingFace model ID ‘microsoft/Florence-2-large’
model_run_path str Output directory Timestamped
batch_size int Batch size 1

Methods

inference
inference(
    image_path: str,
    task: str = "<OD>",
    text_input: str = None,
    question: str = None
)  Union[str, Dict]

Run inference with Florence2 model.

Parameter Type Description Default
image_path str Path to image Required
task str Task type "
text_input str Text input None
question str Question for VQA None

Available tasks:

  • <OD>: Object detection
  • <CAPTION>: Image captioning
  • <DETAILED_CAPTION>: Detailed image captioning
  • <MORE_DETAILED_CAPTION>: Very detailed image captioning
  • <VQA>: Visual question answering
  • <OPEN_VOCABULARY_DETECTION>: Open vocabulary detection

Returns

Union[str, Dict]: Inference results based on the task

finetune
finetune(
    dataset: str,
    classes: Dict[int, str],
    train_test_split: Tuple[int, int, int] = (80, 10, 10),
    epochs: int = 20,
    lr: float = 4e-6,
    **kwargs
)  Dict

Finetune Florence2 model.

Parameter Type Description Default
dataset str Path to dataset Required
classes Dict[int, str] Class ID to name mapping Required
train_test_split Tuple[int, int, int] Training/Test/Validation split (80, 10, 10)
epochs int Number of epochs 20
lr float Learning rate 4e-6

Additional kwargs:

  • save_dir (str): Directory to save model. Default: “model_checkpoints”
  • lora_r (int): LoRA rank. Default: 8
  • lora_scaling (int): LoRA scaling factor. Default: 8
  • patience (int): Early stopping patience. Default: 5
  • lora_dropout (float): LoRA dropout. Default: 0.05
  • warmup_epochs (int): Warmup epochs. Default: 1
  • gradient_accumulation_steps (int): Gradient accumulation steps. Default: 2
  • create_peft_config (bool): Create PEFT config. Default: True

Returns

Dict: Training metrics and model information

PaliGemma2

Vision Language Model

from baseballcv.model import PaliGemma2

PaliGemma2 vision language model for baseball analysis.

Constructor

PaliGemma2(
    device: str = None,
    model_id: str = 'google/paligemma2-3b-pt-224',
    model_run_path: str = f'paligemma2_run_{datetime.now().strftime("%Y%m%d")}',
    batch_size: int = 8,
    torch_dtype: torch.dtype = torch.float32,
    use_pretrained_lora: bool = False
)
Parameter Type Description Default
device str Device for inference None (auto)
model_id str HuggingFace model ID ‘google/paligemma2-3b-pt-224’
model_run_path str Output directory Timestamped
batch_size int Batch size 8
torch_dtype torch.dtype Torch data type torch.float32
use_pretrained_lora bool Use pretrained LoRA weights False

Methods

inference
inference(
    image_path: str,
    text_input: str,
    task: str = "<TEXT_TO_TEXT>",
    classes: List[str] = None
)  Tuple[str, str]

Run inference with PaliGemma2 model.

Parameter Type Description Default
image_path str Path to image Required
text_input str Text input Required
task str Task type "
classes List[str] Class names for detection None

Available tasks:

  • <TEXT_TO_TEXT>: General text generation
  • <TEXT_TO_OD>: Object detection

Returns

Tuple[str, str]: Generated text and path to visualization (for detection)

finetune
finetune(
    dataset: str,
    classes: Dict[int, str],
    train_test_split: Tuple[int, int, int] = (80, 10, 10),
    freeze_vision_encoders: bool = False,
    epochs: int = 20,
    lr: float = 4e-6,
    **kwargs
)  Dict

Finetune PaliGemma2 model.

Parameter Type Description Default
dataset str Path to dataset Required
classes Dict[int, str] Class ID to name mapping Required
train_test_split Tuple[int, int, int] Training/Test/Validation split (80, 10, 10)
freeze_vision_encoders bool Freeze vision encoders False
epochs int Number of epochs 20
lr float Learning rate 4e-6

Additional kwargs: Similar to Florence2.finetune

Returns

Dict: Training metrics and model information

DETR

Object Detection

from baseballcv.model import DETR

DETR (DEtection TRansformer) for object detection tasks.

Constructor

DETR(
    num_labels: int,
    device: str = None,
    model_id: str = "facebook/detr-resnet-50",
    model_run_path: str = f'detr_run_{datetime.now().strftime("%Y%m%d")}',
    batch_size: int = 8,
    image_size: Tuple[int, int] = (800, 800)
)
Parameter Type Description Default
num_labels int Number of object classes Required
device str Device for inference None (auto)
model_id str HuggingFace model ID “facebook/detr-resnet-50”
model_run_path str Output directory Timestamped
batch_size int Batch size 8
image_size Tuple[int, int] Input image size (800, 800)

Methods

finetune
finetune(
    dataset_dir: str,
    classes: dict,
    save_dir: str = "finetuned_detr",
    batch_size: int = 4,
    epochs: int = 10,
    lr: float = 1e-4,
    lr_backbone: float = 1e-5,
    **kwargs
)  Dict

Finetune DETR model.

Parameter Type Description Default
dataset_dir str Path to dataset Required
classes dict Class ID to name mapping Required
save_dir str Directory to save model “finetuned_detr”
batch_size int Batch size 4
epochs int Number of epochs 10
lr float Learning rate 1e-4
lr_backbone float Backbone learning rate 1e-5

Returns

Dict: Training results and model paths

inference
inference(
    file_path: str,
    classes: dict = None,
    conf: float = 0.2,
    save: bool = False,
    save_viz_dir: str = 'visualizations',
    show_video: bool = False
)  List[Dict]

Run inference with DETR model.

Parameter Type Description Default
file_path str Path to image or video Required
classes dict Class ID to name mapping None
conf float Confidence threshold 0.2
save bool Save visualization False
save_viz_dir str Directory for visualizations ‘visualizations’
show_video bool Display video during inference False

Returns

List[Dict]: Detection results

evaluate
evaluate(
    dataset_dir: str,
    conf: float = 0.2
)  Dict

Evaluate DETR model performance.

Parameter Type Description Default
dataset_dir str Path to dataset Required
conf float Confidence threshold 0.2

Returns

Dict: Evaluation metrics

Datasets Module

baseballcv.datasets

The datasets module provides classes for processing and working with baseball datasets.

DataProcessor

Dataset Processing

from baseballcv.datasets import DataProcessor

Class for processing and converting between different dataset formats.

Constructor

DataProcessor(logger=None)

Methods

prepare_dataset
prepare_dataset(
    base_path: str,
    dict_classes: Dict[int, str],
    train_test_split: Tuple[int, int, int] = (80, 10, 10),
    dataset_type: str = "yolo"
)  Tuple[str, str, str, str, str]

Prepare dataset for use with models.

Parameter Type Description Default
base_path str Path to dataset Required
dict_classes Dict[int, str] Class ID to name mapping Required
train_test_split Tuple[int, int, int] Training/Test/Validation split (80, 10, 10)
dataset_type str Dataset type (“yolo”, “coco”, etc.) “yolo”

Returns

Tuple[str, str, str, str, str]: Paths to train images, valid images, train annotations, test annotations, valid annotations

Utilities Module

baseballcv.utilities

Utility classes and functions for BaseballCV.

BaseballCVLogger

Logging

from baseballcv.utilities import BaseballCVLogger

Logger for BaseballCV applications.

Methods

get_logger
get_logger(name: str = None, **kwargs)  BaseballCVLogger

Get or create a logger instance.

Parameter Type Description Default
name str Logger name None
**kwargs dict Additional arguments  

Returns

BaseballCVLogger: Logger instance

ProgressBar

Progress Display

from baseballcv.utilities import ProgressBar

Custom progress bar for BaseballCV operations.

Constructor

ProgressBar(
    iterable=None,
    total: int = None,
    desc: str = "Processing",
    unit: str = "it",
    color: str = "green",
    disable: bool = False,
    bar_format: str = None,
    postfix: dict = None,
    initial: int = 0
)
Parameter Type Description Default
iterable Any Iterable to track None
total int Total items to process None
desc str Description of the task “Processing”
unit str Unit of items “it”
color str Color of the progress bar “green”
disable bool Whether to disable display False
bar_format str Custom format string None
postfix dict Additional info to display None
initial int Initial counter value 0

Methods

update
update(n: int = 1, postfix: dict = None)  None

Update progress bar.

Parameter Type Description Default
n int Increment amount 1
postfix dict Additional display info None

Version Information

Package Info

Current package version: 0.1.21


Table of contents